
 Application for patent filed March 18, 1993.1

THIS OPINION WAS NOT WRITTEN FOR PUBLICATION

The opinion in support of the decision being entered today
(1) was not written for publication in a law journal and
(2) is not binding precedent of the Board.

Paper No. 11

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

Ex parte JEAN BERTHE and HERVE PERRINOT

Appeal No. 1997-1009
Application Serial No. 08/033,7311

ON BRIEF

Before THOMAS, MARTIN, and LEE, Administrative Patent Judges.

MARTIN, Administrative Patent Judge.

DECISION ON APPEAL

This is an appeal under 35 U.S.C. § 134 from the

examiner's final rejection of claims 1-11, all of the pending

claims, under 35 U.S.C. § 103. We reverse.

The invention

The invention is directed to a method for capturing data

for debugging purposes when an exception condition in the form

of a "Major Error," occurs during operation of a software

Appeal No. 1997-1009
Application 08/033,731

- 2 -

program (Spec. at 1, lines 4-7 and p. 7, lines 16-20). When a

"Major Error" occurs, "the program loses control of the

operations and is no longer able to detect itself the error or

failure" (Spec. at 6, lines 24-25).

Appellants' invention can be summarized as follows. The

program code is divided into logical subsets called Tasks

(Spec. at 13, lines 6-8). Each Task or subset is used to

develop a corresponding data table including a plurality of

Families each containing a description of the data fields to

capture in the event of the corresponding error (Spec. at 13,

lines 20-25). In a steady state, the Families are activated

one after the other at the key points of the program code such

that at each key point a Family is selected by the Task in the

Activation Table (Spec. at 18, lines 5-10). When a Major

Error occurs, the task loses control of the operations and the

error is instead detected by a control program, which calls on

an error handler program to retrieve the data fields

identified in the last subset (of the data table) that was

selected by the activation table (Spec. at 18, lines 18-21).

Appeal No. 1997-1009
Application 08/033,731

- 3 -

The claims

Claims 1 and 9 are the only independent claims. Claim 1,

which is representative, reads as follows:

1. A selective method for capturing data in software
exception conditions (Major Errors) during the operation of a
data processing system, said system operating with at least
one task, each said task being endowed with a dedicated memory
space and being executed on instruction of a control program,
characterized in that it involves the steps of:

- defining dynamically for each task a data table (Task Data
Table 200), said data table being divided into a certain
number of subsets (Families 206)

- describing in each subset (Family 206) once at the beginning
of the task execution, the data fields, permanently defined in
the memory of the task, which are relevant for the Major
Errors anticipated by the task,

- describing in each subset (Family 206), in the course of the
execution of the task, the data fields, dynamically defined by
means of temporary memory allocation, which are relevant for
the exception condition (Major Error) anticipated by the task,

- selecting (403, 703) at each potential exception condition
in the code the appropriate subset (Family 206) in an
activation table (405 or 705) unique for each task,

- detecting, when it occurs, an exception condition (409, 709)
and identifying the faulty task,

- transferring the control of the operations to an error
handler code (Error Handler 411 or 711), said code being
endowed with a priority level higher than the level of the
tasks and being authorized to access the tasks memory,

- retrieving by the error handler code (Error Handler 411 or
711) the pertinent data fields from the descriptions (208)

Appeal No. 1997-1009
Application 08/033,731

- 4 -

contained in the last subset (Family 206) selected in the
activation table (405 or 705) associated with the faulty task.

The reference and stated ground of rejection

The sole reference named in the rejection is:

Cobb et al. (Cobb) 5,119,377 June 2,
1992

Claims 1-11 stand rejected under § 103 for obviousness

over Cobb.

The merits of the rejection

Cobb, which is described at pages 5-7 of the "Background

Art" portion of appellants' specification, employs table to

indicate which data to retrieve in response to detection of an

error:

The EDDC [Early Detection Data Capture] process
requires construction of a table which will be
referred to as the Application Data Table (ADT).
Its entries contain detailed information about the
problem program and are selected by the error
detection code as parameters on the call to the EDDC
process. The EDDC process uses this table
information to generate a dump of specific program
storage areas, to create an entry in a software
error log and to build a software generic alert.
This table is the backbone of the EDDC process. It
is a predefined table that provides the process with
all the information required to provide useful and
meaningful diagnostic data outputs. [Col. 4, lines
21-32.]

Appeal No. 1997-1009
Application 08/033,731

- 5 -

However, we agree with appellants that Cobb does not disclose

the claimed steps of "selecting . . . at each potential

exception condition in the code the appropriate subset . . .

in an activation table . . . unique for each task" (emphasis

added), and then, in response to detection of the occurrence

of an exception condition, "retrieving . . . the pertinent

data fields from the descriptions . . . contained in the last

subset . . . selected in the activation table . . . associated

with the faulty task" (emphasis added). These limitations

make it clear that the activation table, throughout execution

of the program code, identifies the subset in the data table

which corresponds to the potential exception condition

currently of concern. Cobb, in contrast, does not track

potential errors or the corresponding information in the data

table. Instead, Cobb waits until an actual error has been

detected to determine which data in the data table corresponds

thereto:

The Early Detection Data Capture process uses
permanently placed error detection points located
strategically within a software program when
initially developed. The detection points check the
status of the software program throughout its
execution. If an error is detected, the EDDC
process is called. Unless an error is detected, the

Appeal No. 1997-1009
Application 08/033,731

 No such limitation appears in claims 9-11. 2

- 6 -

EDDC process remains completely inactive. [Col. 3,
lines 31-38.]

The examiner's argument that the foregoing claim limitations

are satisfied because "figure 5, for example teaches selecting

causes for potential exceptions (see also Figure 6-9)" (Answer

at 10) is unpersuasive, because none of these figures relate

to identifying, during execution of the program code, the data

in the data table which corresponds to the potential error

currently of concern. Consequently, we are not persuaded that

Cobb, the only reference before us, discloses or suggests the

"selecting" and "retrieving" steps of claim 1 or the

corresponding steps in claim 9, the only other independent

claim.

Nor are we persuaded that Cobb discloses or suggests

claim 1's step of "describing in each subset . . . , in the

course of the execution of the task, the data fields,

dynamically defined by means of a temporary memory allocation,

which are relevant for the exception condition (Major Error)

anticipated by the task." The examiner contends this2

limitation is satisfied because "dynamic memory allocation is

Appeal No. 1997-1009
Application 08/033,731

- 7 -

inherent to any process operating on a computer, [sic, ;] when

that process needs more space the computer's operating system

allocates that memory for its temporary usage" (Answer at 4).

While this is true, it does not satisfy the claim language in

question, which requires that the temporary memory locations

be stored in the corresponding subsets of the data table.

For the foregoing reasons, the rejection of claim 1 and

its dependent claims 2-8 is reversed, as is the rejection of

independent claim 9, and its dependent claims 10 and 11.

 REVERSED

JAMES D. THOMAS)
Administrative Patent Judge)

)
)
) BOARD OF PATENT

JOHN C. MARTIN)
Administrative Patent Judge) APPEALS AND

)
) INTERFERENCES
)

JAMESON LEE)
Administrative Patent Judge)

Appeal No. 1997-1009
Application 08/033,731

- 8 -

JCM:lmb

EDWARD H. DUFFIELD
IBM CORP.
DEPT. 972/BLDG. 205
P.O. BOX 12195
RESEARCH TRIANGLE PARK, NC 27709

Appeal No. 1997-1009
Application 08/033,731

- 9 -

